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Fast Sweep Measurements
of Relaxation Times in
Superconducting Cavities

Conventional equilibrium methods used
to determine the quality of cavity resona-
tors [1] become quite inaccurate if cavities
with a high Q, especially superconducting
cavities with Q~ 108 or more, are to be mea-
sured. A static measurement of the cavity
impedance requires an extremely small fre-
quency drift, and swept frequency methods
require a very slow variation of the frequency
because of the long energy relaxation times
involved. If random frequency fluctuations
due to generator noise are comparable to the
bandwidth of the cavity Awg, measurements
of half-power widths become inaccurate.

Typical ‘noisy’ resonance curves of a
superconducting cavity oscillating in a
TEm mode at 9375 and at 9377 Mc/s, as
recorded with a slow frequency sweep, are
shown in Fig. 1. The cylindrical cavity is
made of copper, plated electrolytically with
a lead layer. It is coupled through a circular
irls to a rectangular waveguide. The res-
onance curves represent the reflected power
with the cavity immersed in liquid helium
at 4.2 °K. The two resonances, separated by
2 Mc/s, are caused by a slight mechanical
asymmetry, which splits the angular de-
generacy of modes in a circular cylinder.
Fig. 1 clearly shows the perturbation caused
by FM noise in the X13 klystron, which is
used as an RF generator. The resonator
accepts a narrow portion of the noise spec-
trum centered about its resonant frequency
wg. If the signal frequency w(f) is close to
wg, the filtered noise causes a more or less
periodic perturbation, with a frequency com-
mensurate with the half-power width Awg of
the cavity [2].

Frequency drift and noise interference
can be avoided by using relaxation methods
to determine Q values of high quality cavi-
ties. A simple scheme is based on the conven-
tional frequency sweep method. If the rate of
frequency sweep Aw/T is increased so that
frequency variations comparable to the hali-
power width occur within the relaxation
time 7 of the cavity, i.e., if

Aw Awp

T T
one observes a characteristic distortion of
the resonance curve. The energy stored in
the cavity during the passage of the signal
frequency through its spectral bandwidth
relaxes in the form of a damped oscillation
at the resonance frequency wg. The super-
position of this transient oscillation wg on
the instantaneous generator frequency w(f)
produces a beat frequency in the nonlinear
detector, provided the beat is fast enough.
The beat signal has been observed with the
superconducting cavity and is shown in
Fig. 2 for two different sweep rates. The
beat frequency increases with time according
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Fig. 1. Resonant curves of quasi-degenerate TEiu
modes in a superconducting cavity, measured in
reflection with slow frequency sweep. (a) fg =9375
Mec/s, time scale=0.4 us/div, sweep rate=350
Mec/s?% (b) fr’ =9377 Mc/s, time scale =2 us/div,
sweep rate =0.5 Mc/s%

to a linear frequency sweep used in this ex-
periment. In acoustics, this beat phenom-
enon can be observed on piezoelectric res-
onators. It is often audible and known as
“Cady’s Click” [3].

In order to establish the amplitude and
the decay rate of the beat phenomenon, we
have considered a simple equivalent series
circuit with an inductance L, a capacitance
C, and a resistance R, driven by a voltage
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denotes the resonant frequency. By con-

volution of the impulse response one obtains
for the current in the circuit
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Fig. 2. Beat phenomenon (Cady’s Click) between
transient ringing of a superconducting cavity at
9375 Mc/s and swept frequency for different sweep
rates. (a) time scale=40 us/div, sweep rate
=1.33-10%8 Mc/s% (b) time scale =4 us/div, sweep
rate =8-10¢ Mc/s? (Secondary interference is
caused by quasi-degenerate mode at 9377 Mc/s.)

The integral may be solved rigorously in
terms of error functions. However, the two
important limiting cases corresponding to
very slow frequency variation and to very
fast frequency variation can be obtained
directly from (3). For a slow sweep, i.e.,
with Aw/T<K(Awg)?, a substitution t—x=¢
yields the quasi-static resonance curve, if
terms in £ are neglected in the exponent.
For a fast sweep with Aw/T>>(Awr)?, the
response is obtained by evaluation of the
contribution from the vicinity of the sta-
tionary phase point [4] at x=0,
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This expression is wvalid for times

23> (T/Aw)Awr. It shows a damped ringing
of the cavity at its resonant frequency wpg
after excitation by a signal whose frequency
passes quickly through the bandwidth of
the cavity. The excitation is seen to de-
crease with an increasing sweep rate Aw/7T.
At the nonlinear detector diode, mixing
of the swept frequency wave and the cavity
ringing gives rise to the beat phenomenon.!

t For transmission type cavities a part of the inci-
dent signal may be fed separately to the detector.
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Fig. 3.

Reflection of RF pulse from a superconduct-
ing cavity. Overcoupled mode, pulse carrier fre-
quency =fg =9375 Mc/s, pulse duration 110 us,
time scale 20 us/div. Every relaxation time is read
from decay after termination of pulse.

For a sufficiently fast frequency sweep, the
amplitude of the transient ringing is small
compared to the amplitude of the carrier
signal Io, m=(I,/I,)<1. Neglecting higher
powers of m, one obtains for the detector
current
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Equation 5 shows that the decay of the beat
signal is a direct measure of the loaded
quality of the cavity
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Since a decay proportional to the field am-
plitude is measured, errors caused by non-
quadratic characteristics of the diode are re-
duced. Also, because of the high sweep rate
the measurement is insensitive to spurious
FM noise. However, the response time of the
demodulator and of the oscilloscope must be
fast enough to resolve the beat signal. More
precisely, the upper cutoff frequency of the
detector must be high compared to the beat
frequency when the beat amplitude has
decreased by a factor 1/e, hence,

Aw
Woutott > 2 7— T.

If the response of the receiving system de-
creases towards higher frequencies, the
measured value of the time constant is too
small.

The decay time of the beat signal (Fig. 2)
has been compared with other nonequilib-
rium measurements using RF pulses with
rise and fall times which are short compared
to = [5]. Figure 3 shows the time behaviour
of RF pulses after reflection from the cavity.
The carrier frequency has been adjusted to
the resonant frequency of the cavity. The
measured relaxation time after termination
of the pulse is 10 us, compared to an ampli-
tude decay time of 20 us observed with rapid
frequency alteration and response. The
loaded Q of the resonator in the super-
conducting state is Qr=wgrr~5.9-10° for
the strongly excited resonance {overcritically
coupled) and Qr~6.3-10% for the weakly
excited quasi-degenerate mode (under-
critically coupled). The half-power widths
calculated from the decay times are Af=15.9
ke/s and Af=1.5 kc/s, respectively, in fair
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agreement with the values of Af extrapolated
from the quasi-static resonance curve,

It is interesting to note that with a
sufficiently fast frequency modulation the
beat phenomenon can be observed in any
conventional microwave cavity. Calculations
show that with an increasing sweep rate the
resonance curve first becomes asymmetrical
with a smooth initial flank and a gradually
increasing overshoot. The apparent width
of the resonance curve is increased, i.e.,
with a fast sweep the Q value determined
from the half-power points is too low.
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Re-Entrant Directional Couplers
Having Direct Coupled
Center Conductors

The re-entrant coaxial coupler [1] and
its strip transmission line equivalent [2] are
shown in Figs. 1 and 2, respectively. In both
configurations, no direct coupling between
center conductors exist. The purpose of this
communication is to point out that if direct
coupling between center conductors is per-
mitted, the required value of Zy is reduced
[1] (see Figs. 1 and 2), thus often permitting
easier realization of the coupler than would
otherwise be the case.

For both the networks of Figs. 1 and 2,
the capacitance network at an arbitrary
cross section of the re-entrant coupler with
direct coupling between center conductors is
given in Fig. 3. The direct capacitance be-
tween center conductors is Cys. The capaci-
tance between one center conductor and the
floating shield is Cwx. The capacitance be-
tween the shield and ground is Cye.

The design equations for the network of
Fig. 3 are

376.7V oo/ & = Cnife+ 2C1a/e (1)
and
TZoe
%;ET = (Cx1/) 1+ 2(Cxe/e)™t  (2)
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where:

Zse=the required even-mode impedance
of the directional coupler [3]
Ye=the required odd-mode admittance
of the directional coupler [3]
&= the relative dielectric constant of the
medium, and
e=the permittivity of the medium.

In general,

Cle = 376.7 _ ﬁﬂ 3)
\/Er \/ér
Note that for Ci2=0 (1) and (2) reduce to
(1) and (2) of Cohn [1]

The normalized capacitance Cyg/e is
determined from the network of Fig. 4 and
by (3). In this case the center conductors
are driven in the even-mode [3]. The nor-
malized capacitances Ciz/e and Cui/e are
determined from the network of Fig. 5. In
this case

Cyi/e = 376.7Voo/r/ & @
and

376.7 (Yoo — Yoo)
Ve 2 '

C12/€ =
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where V,, and Y, are the odd- and even-
mode admittances [3], respectively, of the
network of Fig. 5.

A short numerical example will show
how direct coupling between center conduc-
tors reduces the required Zy. Let it be
required to design a —3.0+0.4-dB direc-
tional coupler over a 1.93-to-1 frequency
band. Let the relative dielectric constant of
the medium be 2.3. The required coefficient
of coupling is

k? = 0.55. 6)
It is determined from design equations
given in [3] that
Verloe = 1917 "
and

Ve&rZoo = 29.33. (8

From (1) and (2), the required normalized
capacitances satisfy

0.5248 = (Cvi/€™' + 2(Cxe/e™t  (9)
and

12.84 = Cn1/e + 2Cia/e. (610)]

Case 1: Ciz/e=0. With C»=0, (9) and
(10) may be solved directly.

Cwife = 12.84 an

and

Crng/e = 4.475. 12)

Equation (12) corresponds to
Ve Zo = 84.2, (13)

where we recall that Zy; is determined from
the network of Fig. 4.
Case 2: Cia/e=1.5. Then

Cui/e = 9.843, (14)

and
Cwafe = 4.726. (5)



